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We study a simplified model for pulsed laser deposition �Hinnemann et al., Phys. Rev. Lett. 87, 135701
�2001�� by rate equations. We consider a set of equations where islands are assumed to be pointlike, as well as
an improved one that takes the size of the islands into account. The first set of equations is solved exactly but
its predictive power is restricted to a few pulses. The improved set of equations is integrated numerically, is in
excellent agreement with simulations, and fully accounts for the crossover from continuous to pulsed deposi-
tion. Moreover, we analyze the scaling of the nucleation density and show numerical results indicating that a
previously observed logarithmic scaling does not apply.
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I. INTRODUCTION

Among the techniques for the growth of thin films and
multilayers, molecular beam epitaxy �MBE� and pulsed laser
deposition �PLD� �1� play an important role. Compared to
MBE, PLD has several advantages. For example, pulsed la-
ser deposition is a widely used technique which allows one
to control the stoichiometry of multilayers more efficiently
and leads in some situations to a better layer-by-layer growth
�2�. The essential difference between these two techniques
lies in the way particles are deposited and the kinetic energy
of the arriving particles. While in MBE the flux of particles
is continuous, in PLD intense and short pulses are deposited
on the target, making the flux of incoming particles approxi-
mately discontinuous. Also, in PLD the kinetic energy of the
deposited particles is typically higher than in MBE.

There is already a great amount of theoretical work on
MBE �3�, while there are less theoretical studies on PLD
�4–10�. In the present paper we apply to PLD a theoretical
method that proved to be very useful in MBE, namely, the
rate equations approach �11�. By integrating a set of rate
equations for the island density one can make predictions
about the experimentally relevant quantities characterizing
the system. We use two sets of rate equations: In the first and
more simple one, we consider the islands as pointlike ob-
jects, while in the second approach, introduced for MBE in
Ref. �12�, we improve the equations by considering the com-
petition of islands of different sizes for the arriving and dif-
fusing monomers. The first approach has the advantage that
the rate equations can be solved exactly. The improved set of
rate equations can only be integrated numerically but it
shows excellent agreement with simulations.

In this work we study PLD on the basis of a model inves-
tigated in Ref. �5�, where monomers are deposited on the
surface in infinitely short pulses. These monomers diffuse on
the surface between subsequent pulses until they nucleate to
form the seeds of immobile islands. More precisely, the
model is defined as follows.

�i� In each pulse IL2 monomers, where I is the pulse in-
tensity, are randomly deposited on a two-dimensional L�L
lattice.

�ii� During the time interval between two pulses of length
�= I /F, where F is the time-averaged influx of particles, the
monomers diffuse with rate D.

�iii� When a monomer encounters another monomer or the
border of an agglomerate of particles, it sticks irreversibly.

The model does not take into account that the arriving
particles in PLD have a high kinetic energy, leading to tran-
sient effects such as an enhanced mobility. In fact, the tran-
sient mobility was shown to have a great influence on the
growth kinetics �8–10�. However, Vasco et al. �10�, analyz-
ing a set of rate equations, found out that only the way par-
ticles are deposited already leads to differences in the film
roughness. More specifically, they found that continuous
deposition leads generally to rougher films and an additional
transient mobility in the case of continuous �discontinuous�
deposition makes the film rougher �smoother�. Other simpli-
fications assumed in the model are the irreversibility of ag-
gregation and the immobility of nucleated islands. For in-
stance, the assumption of irreversible aggregation hinders to
study Ostwald ripening, which was recently proposed to be
the key mechanism ruling the PLD growth kinetics in
momoner-depeted regimes �10�. Here we want to study the
difference in the island morphology for continuous and dis-
continuous deposition and the corresponding crossover in the
limit of low energies, assuming that transient mobility effects
lead to corrections that can be neglected. Moreover, we re-
strict ourselves to the submonolayer regime, where the cov-
erage �, which is given by the pulse intensity multiplied by
the number of pulses, is less than one. It turns out that the
dynamical processes at the bottom layer determine the
growth process at the following layers to a large extent �13�.

A nucleation event occurs when a diffusing monomer en-
counters another monomer. A quantity of interest in the study
of PLD and MBE is the nucleation density n, which is de-
fined as the number of nucleation events divided by the num-
ber of lattice sites. In Ref. �5� it was suggested that for PLD
this quantity follows an unusual logarithmic scaling. Later
this type of scaling behavior was explained in the framework
of scaling laws with continuously varying exponents �14�.
Opposed to these early conjectures, we present numerical
evidence that such logarithmic scaling laws do not hold as-
ymptotically, although they may be used as a good approxi-
mation.

The paper is organized in the following way. In the next
section we present the properties of the model and introduce
the observables that we are going to calculate. The third
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section is dedicated to the rate equations, where islands are
approximated as pointlike objects. In Sec. IV we introduce
and analyze the improved set of rate equations. Section V is
concerned with a critical analysis of scaling laws for PLD.
Finally, our conclusions are summarized in Sec. VI.

II. MODEL PROPERTIES

Depending on the pulse intensity I and on the ratio R
=D /F the model for PLD defined above displays different
features. For very small pulse intensities and a finite value of
R, it exhibits essentially the same behavior as MBE. More
specifically, for intensities much smaller than a typical value
Ic, which depends on R, the model is in the MBE regime.
Then, increasing the pulse intensity to a value much larger
than Ic, the model crosses over to a different regime, the
so-called PLD regime. The two regimes differ in so far as
they are characterized by different surface morphologies, that
is, the number and size of islands are distributed differently.
However, as edge diffusion is not included in the model, the
islands remind one of fractal objects in both cases and their
fractal dimension df is approximately equal to the one of
diffusion limited aggregation �DLA� �15–17�.

The two regimes are also different with respect to the
scaling of the average distance between islands lD. In the
MBE limit I� Ic the average distance between islands grows
as �3�

lD � R�, �1�

where

� =
1

df + 4
, �2�

while in the PLD limit I� Ic one has �5�

lD � I−�, �3�

where

� = �/�1 − 2�� . �4�

Hence the crossover takes place if

Ic � R−�/� = R2�−1. �5�

Relations �1� and �3� can be combined in the following scal-
ing form �5�:

lD � R�h�I/R−�/�� , �6�

where h�x� is a scaling function which is constant for x�1
and h�x��x−� for x�1. The same type of scaling behavior is
also expected to hold when considering other typical length
scales as, for example, the mean distance that a monomer
travels before being captured by an island or another mono-
mer, the square root of the mean island size, and the inverse
of the square root of the nucleation density. In numerical
simulations the scaling relations �1�, �3�, and �6� were ob-
served to hold for small coverages before coalescence of
islands sets in �see below�.

In the PLD limit the model is independent of R, the time
interval between two pulses is big enough to make the den-

sity of monomers equal to zero. Hence taking the PLD limit
means that diffusion of monomers occurs until the density of
them is zero, and in principle such a limit can be taken for
any value of I. The smallest value of I with which we per-
form calculations is 0.0001. This value is much lower than
typical experimental pulse intensities, which are of order 0.1
�18,19�. We use low values for the pulse intensity because
we are interested in the scaling behavior of the model in the
limit I→0.

The probability that an occupied site belongs to a cluster
of size s is given by

ps =
sNs

�
, �7�

where Ns is the number density of islands of size s and

� = Ft = �
s=1

	

sNs �8�

is the coverage. Therefore the mean island size is given by

�s	 =
1

�
�
s=1

	

s2Ns. �9�

The nucleation density n is defined as the number of nucle-
ation events �when a monomer meets another monomer� in
the bottom layer per unit area. Initially, when freshly nucle-
ated islands do not yet touch each other, it is equal to the
island density, given by

N = �
s=2

	

Ns. �10�

However, as the coverage increases, more and more islands
coalesce, forming bigger islands. Consequently their number
decreases so that the island density becomes smaller than the
nucleation density, as is shown in Fig. 1. As can be seen,
coalescence—indicated by a difference between n and
N—sets in already before the island density reaches its maxi-
mum. At this maximum the island density begins to decrease
because coalescence events become more frequent than
nucleation events.
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FIG. 1. �Color online� Nucleation density n�t� and island density
N�t� obtained from simulations in the PLD limit for I=0.001.
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As for the scaling of the nucleation density in the PLD
regime, the following relations were observed in Ref. �5�:
After the first pulse, where �= I, the nucleation density scales
as

n�I,I� � I . �11�

Upon completion of the bottom layer ��=1� the nucleation
density was found to scale as

n�I,1� � I2�. �12�

These two scaling laws determine the terminal points of the
curves n�I ,�� for different intensities I. However, these
curves were found to have a different shape in a double-
logarithmic representation, making it impossible to perform
an ordinary data collapse. This suggested that the model does
not exhibit ordinary power-law scaling.

As a possible way out, a logarithmic scaling form was
proposed �5�. The starting point was the observation that by
squeezing and stretching the curves in such a way that the
terminal points collapse, the entire curves for different inten-
sities seem to collapse as well. This led to the conjectured
scaling form

ln M�I,�� = �ln I�g
 ln �

ln I
� , �13�

where

M�I,�� =
n�I,��
n�I,1�

. �14�

Here g�x� is a universal function, and this scaling is supposed
to be valid in the full range 0
��1. In a subsequent work,
this type of scaling behavior was backed up by a theoretical
framework which involves continuous varying exponents
�14�, where the scaling exponents are continuous functions
of the control parameters. One of the purposes of this paper
is to show that this logarithmic scaling does probably not
apply to PLD in a strict sense.

Throughout this paper all numerical simulations were per-
formed in 2+1 dimensions on a 400�400 lattice with peri-
odic boundary conditions. For average quantities such as the
island and nucleation densities or the mean island size, the
number of independent runs was 100 while, when calculating
the probability distribution �7�, we used 10 000 runs.

III. RATE EQUATIONS

In this and the following section we study the model in-
troduced above by mean-field approximations on different
levels. Before starting let us emphasize that these approaches
are based on the same assumptions �e.g., irreversible aggre-
gation, immobile aggregates� as the full model defined in the
Introduction, extended by additional mean-field type ap-
proximations such as the homogeneity of densities and the
neglect of correlations.

We start with a simple set of rate equations for the island
density N and the monomer density N1 �see Refs. �3,12,20��

dN1

dt
= F�t� − 2DN1

2 − DNN1, �15�

dN

dt
= DN1

2. �16�

The first term on the right-hand side of Eq. �15� describes the
flux of particles while the second and third terms are related
to nucleation of two monomers and attachment of monomers
at existing islands, respectively. In Eq. �16� the term on the
right-hand side describes the increase of the island density by
nucleation of two diffusing monomers. For MBE the flux is
constant, while for PLD the flux is modeled by a discontinu-
ous sequence of spikes,

F�t� = I�
l=0

	

��t − �l� , �17�

where � is the time interval between two pulses.
In this set of rate equations coalescence is not taken into

account, hence within this theory the nucleation density and
the island density are identical. Moreover, the approach does
not take into account how islands of different sizes compete
for the diffusing and arriving monomers since islands are
treated as pointlike objects. Therefore this approximation is
expected to be valid �when compared with simulations� just
for the first few pulses.

The MBE limit corresponds to taking �→0 and I→0
with I /�=F, since this renders a constant flux F. In the MBE
regime it was found that initially, when N1�N, the island
density grows as N� t3. However, when N�N1, the growth
of the island density becomes slower, crossing over to the
power law N� t1/3 �see Ref. �3��.

To solve the equations in the PLD limit, let us first con-
sider the evolution between two pulses l and l+1:

dN1

dt
= − 2N1

2 − NN1, �18�

dN

dt
= N1

2, �19�

where, without loss of generality, we set D=1. In order to
make the above equations linear one introduces a modified
time variable �21,22�

T = �
0

t

N1�t��dt�. �20�

Because of dT=N1�t�dt, Eqs. �18� and �19� turn into

dN1

dT
= − 2N1 − N , �21�

dN

dT
= N1. �22�

With the initial conditions N1�0�= I and N�0�=N�l�, where
N�l� is the island density after l pulses, one is led to the
solutions

N1�T� = �I − �I + N�l��T�exp�− T� , �23�
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N�T� = �N�l� + �I + N�l��T�exp�− T� . �24�

In the PLD limit the pulses are so strongly separated in time
that all diffusing adatoms have nucleated or attached to ex-
isting islands before the next pulse arrives. The diffusion
process ends at the final �modified� time Tf when

N1�Tf� = 0 �25�

and the corresponding island density N�Tf�=N�l+1� stays con-
stant until the next pulse arrives. Because of Eq. �23� the
modified final time Tf is given by Tf = I / �I+N�l��, hence with
Eq. �24� we obtain the recurrence relation

N�l+1� = �I + N�l��exp
 − I

I + N�l�� , �26�

with the initial condition N�0�=0. Rewriting the island den-
sity as

N�l� = AlI �27�

with

A0 = 0 �28�

this recurrence relation turns into

Al+1 = �1 + Al�exp
 − 1

1 + Al
� , �29�

which is independent of I. This means that within this mean-
field approximation the island density is proportional to the
pulse intensity. As shown in Fig. 2, where relations �27�–�29�
are compared with simulations, this is indeed the case for the
first few pulses. For the predicted slope, however, we see a
better agreement for the first pulse and also for smaller val-
ues of the pulse intensity.

This approximation reproduces another important feature
of the full model, namely, after the first pulse, for a fixed
value of I, the nucleation density in the PLD limit is consid-
erably larger than the nucleation density in the MBE limit
R� I1/�2�−1� �see Fig. 3, where the rate equations and simu-
lation results are compared in both limits�. However, the
nucleation density in the MBE limit grows faster and even-

tually exceeds the nucleation density in the PLD limit such
that the two curves in Fig. 3 cross each other.

The rate equations used here assume islands to be point-
like objects. Obviously, this approach works only for very
small values of the coverage �much smaller than the value at
which coalescence starts� and thus it is inadequate to fully
account for the crossover from PLD to MBE. In particular, it
does not allow one to confirm the scaling relation �6�. In the
next section we consider improved rate equations that over-
come these problems.

IV. IMPROVED RATE EQUATIONS

In order to improve the rate equations for the model de-
fined in the Introduction let us now consider the dynamics of
islands with different sizes separately and study how they
compete for the diffusing monomers and how other adatoms
are deposited on top of these islands.

A set of rate equations for MBE that takes these features
into account is �12�

dNs

d�
= �D/F�N1�
s−1Ns−1 − 
sNs� + ks−1Ns−1 − ksNs,

�30�

dN1

d�
= 1 − �D/F�N1
2
1N1 + �

s=2

	


sNs� − k1N1 − �
s=1

	

ksNs,

�31�

where the constants 
s are effective rates describing how an
island of size s competes for the diffusing monomers while
the constants ks are related to the capture of the incident
monomers. These quantities are given by �12�

ks = s2/df �32�

and
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FIG. 2. �Color online� Island density in the PLD limit as a
function of I for the first three pulses l=1,2 ,3 obtained from simu-
lations �points� and from relations �12�, �28�, and �29� �lines�.
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FIG. 3. �Color online� Comparison of the nucleation density
obtained by simulations �points� and the rate equations �15� and
�16� �lines� with I=0.001 and, in the MBE limit, R=104. Note that
for comparing the two cases for given I, R has to be chosen such
that R� I1/�2�−1�.
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s = 2��Rs/��
K1�Rs/��
K0�Rs/��

, �33�

where K0 and K1 are modified Bessel functions, Rs is the
island radius, and � is the average distance a monomer trav-
els before being captured by an island or another monomer,
given by

�−2 = 2
1N1 + �
s=2

	


sNs + �F/D�k1N1. �34�

These improved relations assume that the islands are circular.
However, in reality and simulations, the islands resemble
fractal objects. The fractal morphology of the islands is taken
into account in an effective way by assuming that the island
radius grows with its size by �12�

Rs = �s1/df , �35�

where � is a fit parameter, to be determined by the compari-
son of the results arising from numerical integration of the
rate equations and simulations, and df =1.72 is the fractal
dimension of DLA-like clusters �23�.

In order to generalize the above rate equations to pulsed
deposition we use, as in the former case, a discontinuous flux
of incoming monomers, obtaining the differential equations

dN1

d�
= �

l

1 − k1N1 − �

s=1

	

ksNs�I��� − lI� − 2D
1N1
2

− DN1�
s=2

	


sNs, �36�

dNs

d�
= �

l

�ks−1Ns−1 − ksNs�I��� − lI� + DN1�
s−1Ns−1 − 
sNs� ,

�37�

where the � functions couple to the terms proportional to ks
since those terms are related to the capture of arriving mono-
mers, an event that takes place during deposition. As in the
previous case, the improved equations predict that the nucle-
ation density n and island density N are identical since coa-
lescence is not taken into account. Since coalescence influ-
ences directly only the island density, we find it more
appropriate to compare the results coming from numerical
integration of these equations with the nucleation density
obtained by simulations.

The rate equations �36� and �37� faithfully reproduce the
predicted crossover from MBE to PLD. To demonstrate this
we show, in Fig. 4, the corresponding data collapse accord-
ing to the scaling form �6� with �=0.23 and �=0.15, where
we used �=1. We note that the value of the fit parameter �
could be different for MBE and PLD. However, when con-
sidering the crossover from MBE to PLD one has to use a
single value for which �=1 turned out to be a good choice.
This approximation is justified since the value of this param-
eter does not change the type of scaling behavior. Neverthe-

less, this ambiguity regarding the value of � may lead to
small numerical deviations in the estimates of the scaling
exponents � and �.

In Figs. 5 and 6 we compare the numerical integration of
the rate equations with numerical simulations of the full
model. Figure 5 shows the nucleation density and the mean
island size as functions of the coverage for different values
of the pulse intensity. As can be seen, simulations and nu-
merical integration of the rate equations agree almost per-
fectly. As is shown in Fig. 6, the agreement is less good for
the probability distribution �6�. Such discrepancies are not
surprising because the rate equations approach is a mean-
field theory, neglecting correlations in the system. Similar
discrepancies were already observed in the MBE limit �12�.
The values of the fit parameter that we used are ��1.7 in
the PLD limit and ��0.3 in the MBE limit.

This improved theory has considerable advantages when
compared to the previous one. As shown in Fig. 4, it fully
accounts for the crossover from MBE to PLD, and the ob-
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FIG. 4. �Color online� Data collapse to verify Eq. �6� obtained
from numerical integration of Eqs. �36� and �37� with �=1 at the
coverage �=0.1.
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FIG. 5. �Color online� Comparison between simulations �s� and
numerical integration of the rate equations �36� and �37� �r� of the
nucleation density �upper panel� and mean island size �lower panel�
in the PLD limit for the pulse intensities I=0.0001 �a�, I=0.0002
�b�, I=0.0005 �c�, and I=0.001 �d�.
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servables, except for coverages where coalescence starts to
play an important role, are in excellent agreement with simu-
lations. This excellent agreement indicates that the improved
mean-field equations capture the most important features of
the model while other possible sources of deviations such as
correlations and fluctuations are probably less important.

V. SCALING PROPERTIES OF PULSED
DEPOSITION

As mentioned in the Introduction, it was proposed that
PLD could be described by an unconventional logarithmic
scaling form �5�. In this section we study this conjecture
from a critical perspective.

Let us first recall the scaling properties of MBE. After an
initial transient time and before the onset of coalescence, the
probability distribution �7� is known to obey the scaling re-
lation �12�

ps��� = �s	−1f
 s

�s	
� , �38�

where f�x� is a universal function independent of the control
parameters R and �. This means that, in the MBE regime, the
model has only one characteristic size and therefore the mor-
phology of the islands stays the same if the control param-
eters are varied.

Turning to the PLD limit, in Fig. 7 we observe that a
convincing data collapse is obtained for different coverages
if the pulse intensity is kept fixed, while the collapse is not
satisfactory for different values of the pulse intensity and a
fixed coverage. Therefore, in the PLD limit, the function f�x�
is not universal, instead it explicitly depends on one of the
control parameters, namely, the pulse intensity I. However,
for reasons that are explained below, the island morphology
seems to be the same for different values of the pulse inten-
sity.

To explain the failure of conventional scaling, the loga-
rithmic scaling form �13� was suggested on a purely heuris-
tical basis �5�. This scaling form had been applied previously
to various other problems: experiments in turbulence �24�,
self-organized critical sandpile models �25,26�, and, as in the
present case, DLA-related growth processes �27�. Figure 8
shows a data collapse of the normalized nucleation density
according to this scaling form, which at first glance seems to
be convincing. Initially it was speculated that the unusual
type of scaling behavior, which can be explained in terms of
continuously varying critical exponents �14�, may be related
to the fractal structure of the islands, which become more
and more compact as the first monolayer is filled up. How-
ever, later it was shown �7� that the same logarithmic scaling
form can be used in a 1+1-dimensional model for pulsed
deposition, where the �one-dimensional� islands are always
compact.

A closer look at Fig. 8 reveals that the collapse is not
perfect; rather there are deviations with a clear systematic
tendency. It seems that the curves become more straight as
the intensity is reduced, questioning the concept of logarith-
mic scaling.

Although we are still unable to disprove or confirm the
concept of logarithmic scaling applied to PLD, it is in our
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FIG. 6. �Color online� The probability distribution function �7�
for I=0.0001 in the PLD limit obtained from simulations �s� and
from a numerical integration of the rate equations �36� and �37� �r�.
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opinion useful to demonstrate that an alternative scaling con-
cept yields at least as good if not even better results. The
starting point is the observation that average quantities like
the mean island size and the nucleation density exhibit a
clean power-law dependence on I if the coverage � is kept
fixed. However, the value of the exponent varies with the
coverage, i.e.,

n�I,�� � I����. �39�

The plots of the nucleation density as a function of I for
different values of � �cf. Fig. 9� suggest that the exponent �
increases monotonically with �. Actually, �=2� and there-
fore Eq. �3� should be corrected by introducing an exponent
� which depends continuously on the coverage. Since the
exponent � is related to the fractal dimensionality of the
islands, this indicates that the fractal dimension of them ef-
fectively varies with �. However, the data collapse of the
probability distribution for different values of the coverage
�Fig. 7� shows that this is clearly not the case.

We have also observed that in the one-dimensional model,
where the islands have no fractal properties, the nucleation
density follows a power law for a fixed value of the cover-
age. Moreover, we observed that the function f�x�, defined in
Eq. �38�, does depend on the pulse intensity. This indicates
that these two features of the model in the PLD limit are not
related to the fractal dimension of the islands and hence we
do not expect it to vary with the control parameters.

In Fig. 8 we present a data collapse using relation �13� for
different values of the pulse intensity. Since M�I ,1�=1 and
M�I , I� follows a power law, the first ��= I� and last ��=1�
points of the curves collapse. However, the situation in the
middle of the curve �I���1� is unclear. More specifically,
as is shown in the inset of Fig. 8, for 0.2
 ln � / ln I
0.25
the value of ln M�I ,�� increases monotonically with I, thus
exhibiting a systematic deviation rather than a statistical er-
ror. Also, this scaling is in disagreement with relation �39�,
since from it the value of M�I ,�� should be constant for a
fixed coverage. For these reasons we consider the numerical

evidence supporting Eq. �39� as more reliable than the data
collapse obtained using the logarithmic scaling form.

VI. CONCLUSION

In this paper we have studied several variants of rate
equations for pulsed deposition. First a simple set of rate
equations, where the islands are treated as pointlike objects,
was considered. The equations were solved exactly in the
limit of strong and temporally separate pulses �the so-called
PLD limit as opposed to the MBE limit of continuous depo-
sition�, reproducing some features of the model for very
small values of the coverage. Since this approximation does
not take the dimension of the islands into account it was not
possible to faithfully reproduce the crossover from MBE to
PLD. This problem was overcome with a second improved
set of rate equations that takes the dimension of the islands
into account. As in the case of MBE �12�, we showed that
these improved equations lead to results which are in excel-
lent agreement with simulations for pulsed deposition.

Another point of the present work was to revisit a recently
proposed logarithmic scaling for pulsed deposition from a
critical perspective. In the corresponding data collapses we
have observed small violations for intermediate coverages
with a systematic drift, indicating that logarithmic scaling
may be a good approximation for pulse intensities in com-
puter simulations and experiments but probably it is not as-
ymptotically valid in the limit I→0.

As an alternative suggestion, we have proposed that the
nucleation density, for a fixed value of the coverage, as a
function of I follows a power law and that the exponent
varies with the coverage. This suggestion is supported by
numerical simulations and leads to numerical results which
are more accurate than the data collapses obtained by using
logarithmic scaling. This may be another hint that logarith-
mic scaling, as proposed in Ref. �5�, has to be replaced by a
different type of scaling theory.

We have pointed out another feature of the two-
dimensional model in the PLD limit, namely, the probability
distribution ps that a site belongs to a cluster of size s does
not scale according to relation �38� for different values of the
pulse intensity. At first glance this nonuniversal behavior
may lead to the conclusion that for different pulse intensities
the fractal dimension of the islands is different. However,
studying the one-dimensional model, where islands have no
fractal properties, the same effect is observed, indicating that
this is not the case.

Let us finally comment on the one-dimensional model in
more detail. This case was previously studied in Ref. �7�,
where a reasonable data collapse for the nucleation density
based on logarithmic scaling was presented. Contrarily, we
observe a clean power-law behavior of the nucleation density
as a function of I for a fixed � and also a nonuniversal prob-
ability distribution for different values of I. Hence the one-
dimensional model seems to exhibit a behavior which is as
rich as in the two-dimensional case and a systematic study of
the one-dimensional case may be very useful for clarifying
some aspects of PLD.
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FIG. 9. �Color online� Nucleation density, obtained from simu-
lations, as a function of I for different values of �. The graph sug-
gests that the exponent � increases with �.
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